ADDENDUM NO.2

April 6, 2018

PROJECT NAME: DPW 18 223 Idaho State University Liberal Arts Building Chiller Replacement

The data included hereinafter is issued by the Engineer (Engineered Systems Associates, Inc. 1355 East Center, Pocatello, ID 83201) as clarification, addition to, and/or deletion from the Drawings, Specifications, and Contract Documents relative to the above-named project.

Except as affected by data included hereinafter, all other parts of the Contract Documents shall remain in full force and effect as issued by the Engineer. It shall be the sole responsibility of the Bidder to appropriately disseminate this data to all concerned prior to the assigned bid time and date. Acknowledge Receipt of this addendum shall be recorded by the Bidder in the appropriate space on the Bid Form included in the Contract Documents. Failure to do so may subject the bidder to disqualification

This addendum consists of <u>1</u> page and <u>10</u> pages attachment for a total of <u>11</u> pages.

Changes to the Specifications:

- 1. Section 23 0514 Variable Frequency Drives:
 - a. Paragraph 2.1.B Enclosures may be NEMA 1 rather than NEMA 12.
 - b. Delete paragraph 2.2.E. Not required.
 - c. Paragraph 2.2.F Overload capability to be 110% rather than 150%.
 - d. Delete paragraph 2.3. Not required.
- 2. Section 23 0593 Testing, Adjusting and Balancing. This work will be performed by the owners selected TAB Agency and is included for reference only. Do not include this section in the project bid.
- Section 23 0800 Commissioning of HVAC Systems. This work will be performed by the owners selected CX Agency and is included for reference only. Do not include this section in the project bid.
- 4. Replace Section 23 2113 Hydronic Piping with the attached Section 23 2113 Hydronic Piping.
- 5. Delete Section 23 2500 Chemical Water Treatment Not required.

Changes to the Drawings:

 Reference Drawing C-1. Contractors may use East end of parking lot South of Building 1 – Frazier Hall and may drive up sidewalk from South 5th Ave for equipment deliveries to Site. Coordinate with Idaho State University prior to making deliveries. There are Steam Tunnels that will be crossed, so weight of vehicles is a concern and coordination with Idaho State University is required. Contractors must secure temporary parking permits from Idaho State University at the Maintenance and Operation Building 18, or vehicles will be subject to ticketing and/or towing.

END OF ADDENDUM

SECTION 23 2113 - HYDRONIC PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings, General Provisions of Contract, including General and Supplementary Conditions and Section 23 0501 apply to this Section.
- 1.2 SUMMARY
 - A. This Section includes piping, special-duty valves, makeup water for these systems; blowdown drain lines; and condensate drain piping.

1.3 SUBMITTALS

- A. Product Data: For each type of special-duty valve indicated. Include flow and pressure drop curves based on manufacturer's testing for diverting fittings, calibrated balancing valves, and automatic flow-control valves.
- B. Shop Drawings: Detail fabrication of pipe anchors, hangers, special pipe support assemblies, alignment guides, expansion joints and loops, and their attachment to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Welding Certificates: Copies of certificates for welding procedures and personnel.
- D. Field Test Reports: Written reports of tests specified in Part 3 of this Section. Include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Failed test results and corrective action taken to achieve requirements.
- E. Maintenance Data: For hydronic specialties and special-duty valves to include in maintenance manuals specified in Division 23.
- F. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.4 QUALITY ASSURANCE

- A. Welding: Qualify processes and operators according to the ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
- C. To assure uniformity and compatibility of piping components in grooved end piping systems, all grooved products utilized shall be supplied by a single manufacturer. Grooving tools shall be supplied by the same manufacturer as the grooved components.

1.5 COORDINATION

A. Coordinate layout and installation of hydronic piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

- B. Coordinate pipe sleeve installations for foundation wall penetrations.
- C. Coordinate piping installation with roof curbs, equipment supports, and roof penetrations.
- D. Coordinate pipe fitting pressure classes with products specified in related Sections.
- E. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base. Concrete, reinforcement, and formwork requirements are specified in Division 3 Sections.
- F. Coordinate installation of pipe sleeves for penetrations through exterior walls and floor assemblies. Coordinate with requirements for firestopping specified in Division 7 Section "Through-Penetration Firestop Systems" for fire and smoke wall and floor assemblies.

1.6 EXTRA MATERIALS

A. Water Treatment Chemicals: Furnish sufficient chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.

PART 2 - PRODUCTS

1.

3.

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Grooved Mechanical-Joint Fittings and Couplings:
 - a. Central Sprinkler Company; Central Grooved Piping Products.
 - b. Grinnell Mechanical Products.
 - c. Victaulic Company of America.
 - 2. Calibrated Balancing Valves:
 - a. Armstrong Pumps, Inc.
 - b. Flow Design, Inc.
 - c. Gerand Engineering Company.
 - d. Griswold Controls.
 - e. ITT Bell & Gossett; ITT Fluid Technology Corp.
 - f. Taco, Inc.
 - g. Tour Andersson supplied by Victaulic
 - Pressure-Reducing Valves:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Conbraco Industries, Inc.
 - d. ITT Bell & Gossett; ITT Fluid Technology Corp.
 - e. Spence Engineering Company, Inc.
 - f. Watts Industries, Inc.; Watts Regulators.
 - 4. Safety Valves:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Conbraco Industries, Inc.
 - d. ITT McDonnell & Miller Div.; ITT Fluid Technology Corp.
 - e. Kunkle Valve Division.
 - f. Spence Engineering Company, Inc.
 - 5. Automatic Flow-Control Valves:
 - a. Flow Design, Inc.
 - b. Griswold Controls.
 - Expansion Tanks:
 - a. Amtrol, Inc.

6.

- b. Armstrong Pumps, Inc.
- c. ITT Bell & Gossett; ITT Fluid Technology Corp.
- d. Taco, Inc.
- 7. Air Separators and Air Purgers:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. ITT Bell & Gossett; ITT Fluid Technology Corp.
 - d. Taco, Inc.

2.2 PIPING MATERIALS

- A. General: Refer to Part 3 "Piping Applications" Article for applications of pipe and fitting materials.
- 2.3 COPPER TUBE AND FITTINGS
 - A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
 - B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
 - C. DWV Copper Tubing: ASTM B 306, Type DWV.
 - D. Wrought-Copper Fittings: ASME B16.22.
 - E. Wrought-Copper Unions: ASME B16.22.
 - F. Solder Filler Metals: ASTM B 32, 95-5 tin antimony.
 - G. Brazing Filler Metals: AWS A5.8, Classification BAg-1 (silver).

2.4 STEEL PIPE AND FITTINGS

- A. Steel Pipe, NPS 2 and Smaller: ASTM A 53, Type S (seamless) or Type F (furnace-butt welded), Grade B, Schedule 40, black steel, plain ends.
- B. Steel Pipe, NPS 2-1/2 through NPS 12: ASTM A 53, Type E (electric-resistance welded), Grade B, Schedule 40, black steel, plain ends.
- C. Steel Pipe, NPS 14 through NPS 18: ASTM A 53, Type E (electric-resistance welded) or Type S (seamless), Grade B, Schedule 30, black steel, plain ends.
- D. Steel Pipe, NPS 20: ASTM A 53, Type E (electric-resistance welded) or Type S (seamless), Grade B, Schedule 20, black steel, plain ends.
 - 1. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53, Schedule 40, black steel; seamless for NPS 2 and smaller and electric-resistance welded for NPS 2-1/2 and larger.
- E. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250.
- F. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300.
- G. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300.
- H. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced.
- I. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- J. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts,

nuts, and gaskets of the following material group, end connections, and facings:

- 1. Material Group: 1.1.
- 2. End Connections: Butt welding.
- 3. Facings: Raised face.
- K. Grooved Mechanical-Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47, Grade 32510 malleable iron; ASTM A 53, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders designed to accept grooved end couplings.
- L. **Standard Mechanical Couplings, 2 inch through 12 inch**: Manufactured in two segments of cast ductile iron, conforming to ASTM A-536, Grade 65-45-12. Gaskets shall be pressure-responsive synthetic rubber, grade to suit the intended service, conforming to ASTM D-2000. (Gaskets used for potable water applications shall be UL classified in accordance with ANSI/NSF-61 for potable water service.) Mechanical Coupling bolts shall be zinc plated (ASTM B-633) heat treated carbon steel track head conforming to ASTM A-449 and ASTM A-183, minimum tensile strength 110,000 psi (758450 kPa).
 - 1. **Rigid Type**: Coupling housings with offsetting, angle-pattern bolt pads shall be used to provide system rigidity and support and hanging in accordance with ANSI B31.1, B31.9, and NFPA 13.
 - a. 2 inch through 12 inch: Installation ready rigid coupling for direct stab installation without field disassembly. Gasket shall be Grade EPDM compound designed for operating temperatures from -30 deg F to +250 deg F. Gasket temperature rating shall be met without the use of special lubricants.
 - 2. **Flexible Type**: Use in locations where vibration attenuation and stress relief are required. Flexible couplings may be used in lieu of flexible connectors at equipment connections. Three couplings, for each connector, shall be placed in close proximity to the vibration source.
 - a. 2" through 8": Installation-ready flexible coupling for direct stab installation without field disassembly. Gasket shall be grade EPDM compound designed for operating temperatures from -30 deg F to +250 deg F. Gasket temperature rating shall be met without the use of special lubricants.
 - b. 10" through 12": Standard flexible couplings. Gasket shall be Grade "E" EPDM compound designed for operating temperatures from -30 deg F to +230 deg F.
- M. Flexible Connectors: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket; 150-psig minimum working pressure and 250 deg F maximum operating temperature. Connectors shall have flanged or threaded-end connections to match equipment connected and shall be capable of 3/4-inch misalignment.
- N. Spherical, Rubber, Flexible Connectors: Fiber-reinforced rubber body with steel flanges drilled to align with Classes 150 and 300 steel flanges; operating temperatures up to 250 deg F and pressures up to 150 psig.
- O. Packed, Slip, Expansion Joints: 150-psig minimum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, packing ring, packing, limit rods, flanged ends, and chrome-plated finish on slip-pipe telescoping section.
- P. Welding Materials: Comply with Section II, Part C, of the ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.
- Q. Gasket Material: Thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.

2.5 VALVES

A. Grooved-End Butterfly Valves

ISU Liberal Arts Chiller Replacement

- 1. 2" through 12" Sizes: 300 psi CWP suitable for bidirectional and dead-end service at full rated pressure. Body shall be grooved end black enamel coated ductile iron conforming to ASTM A536. Disc shall be electroless nickel plated ductile iron with blowout proof 416 stainless steel stem. Disc shall be offset from the stem centerline to allow full 360 degree circumferential seating. Seat shall be pressure responsive EPDM. Valve bearings shall be TFE lined fiberglass, and stem seals shall be of the same grade elastomer as the valve seat. Valve shall be complete with ISO flange for actuation mounting. Valve operators shall be lever handle or gear operator, available with memory stop feature, locking device, chainwheel, or supplied bare. (Valve with EPDM seat is UL classified in accordance with ANSI/NSF-61.)
- B. Grooved-End Check Valves
 - 1. 2 inch through 12 inch sizes: Spring Assisted: Black enamel coated ductile iron body, ASTM A-536, Grade 65-45-12, elastomer encapsulated ductile iron disc suitable for intended service, stainless steel spring and shaft, welded-in nickel seat, 300 psi. Valve with pre-tapped ports as available option.
- C. Refer to Part 3 "Valve Applications" Article for applications of each valve.
- D. Calibrated Balancing Valves, NPS 2 and Smaller: Bronze body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature, and having threaded ends. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.
- E. Calibrated Balancing Valves, NPS 2-1/2 and Larger: Cast-iron or steel body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature, and having flanged or grooved connections. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.
- F. Pressure-Reducing Valves: Diaphragm-operated, bronze or brass body with low inlet pressure check valve, inlet strainer removable without system shutdown, and noncorrosive valve seat and stem. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory set at operating pressure and have capability for field adjustment.
- G. Safety Valves: Diaphragm-operated, bronze or brass body with brass and rubber, wetted, internal working parts; shall suit system pressure and heat capacity and shall comply with the ASME Boiler and Pressure Vessel Code, Section IV.
- H. Automatic Flow-Control Valves: Gray-iron body, factory set to maintain constant flow with plus or minus 5 percent over system pressure fluctuations, and equipped with a readout kit including flow meter, probes, hoses, flow charts, and carrying case. Each valve shall have an identification tag attached by chain, and be factory marked with the zone identification, valve number, and flow rate. Valve shall be line size and one of the following designs:
 - 1. Gray-iron or brass body, designed for 175 psig at 200 deg F with stainless-steel piston and spring.
 - 2. Brass or ferrous-metal body, designed for 300 psig at 250 deg F with corrosion-resistant, tamperproof, self-cleaning, piston-spring assembly easily removable for inspection or replacement.
 - 3. Combination assemblies, including bronze ball valve and brass alloy control valve, with stainless-steel piston and spring, fitted with pressure and temperature test valves, and designed for 300 psig at 250 deg F.
- I. Plastic Butterfly Valves: 150-psig working pressure, 250 deg F maximum operating temperature, PVC wafer body, polytetrafluoroethylene seats, lever lock handle, and wafer style for installation between flanges.

2.6 HYDRONIC SPECIALTIES

- A. Manual Air Vent: Bronze body and nonferrous internal parts; 150-psig working pressure; 225 deg F operating temperature; manually operated with screwdriver or thumbscrew; with NPS 1/8 discharge connection and NPS 1/2 inlet connection.
- B. Automatic Air Vent: Designed to vent automatically with float principle; bronze body and nonferrous internal parts; 150-psig working pressure; 240 deg F operating temperature; with NPS 1/4 discharge connection and NPS 1/2 inlet connection.
- C. Expansion Tanks: Welded carbon steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested with taps fabricated and labeled according to the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. Include the following fittings and accessories:
 - 1. Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. unit only; sized for compression-tank diameter. Design tank fittings for 125-psig working pressure and 250 deg F maximum operating temperature.
 - 2. Tank Drain Fitting: Brass body, nonferrous internal parts; 125-psig working pressure and 240 deg F maximum operating temperature; designed to admit air to compression tank, drain water, and close off system.
 - 3. Gage Glass: Full height with dual manual shutoff valves, 3/4-inch- diameter gage glass, and slotted-metal glass guard.
- D. Expansion Tanks: Welded carbon steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Separate air charge from system water to maintain design expansion capacity by a flexible bladder securely sealed into tank. Include drain fitting and taps for pressure gage and air-charging fitting. Support vertical tanks with steel legs or base; support horizontal tanks with steel saddles. Factory fabricate and test tank with taps and supports installed and labeled according to the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
- E. Tangential-Type Air Separators: Welded black steel; ASME constructed and labeled for 125psig minimum working pressure and 375 deg F maximum operating temperature; perforated stainless-steel air collector tube designed to direct released air into expansion tank; tangential inlet and outlet connections; threaded connections for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger; threaded blowdown connection. Provide units in sizes for full-system flow capacity.
- F. In-Line Air Separators: One-piece cast iron with an integral weir designed to decelerate system flow to maximize air separation at a working pressure up to 175 psig and liquid temperature up to 300 deg F.
- G. Air Purgers: Cast-iron body with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal. Maximum working pressure of 150 psig and temperature of 250 deg F.
- H. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.
- I. Diverting Fittings: 125-psig working pressure; 250 deg F maximum operating temperature; cast-iron body with threaded ends, or wrought copper with soldered ends. Indicate flow direction on fitting.
- J. Y-Pattern Strainers: 125-psig working pressure; cast-iron body (ASTM A 126, Class B), flanged

ends for NPS 2-1/2 and larger, threaded connections for NPS 2 and smaller, bolted cover, perforated stainless-steel basket, and bottom drain connection.

- K. Grooved Y-Pattern Strainer: 2 inch through 18 inch sizes, 300 PSI Y-Type Strainer shall consist of ductile iron body, ASTM A-536, Grade 65-45-12, Type 304 stainless steel perforated metal removable baskets with 1/16" (1,6mm) diameter perforations 2"-3" strainer sizes, 1/8" (3,2mm) diameter perforations 4"-12" strainer sizes, and 0.156" (4mm) diameter perforations 14" -18" strainer sizes. Strainer basket shall be accessed by removal of mechanical coupling.
- L. Basket Strainers: 125-psig working pressure; high-tensile cast-iron body (ASTM A 126, Class B), flanged-end connections, bolted cover, perforated stainless-steel basket, and bottom drain connection.
- M. T-Pattern Strainers: 750-psig working pressure; ductile-iron or malleable-iron body, groovedend connections, stainless-steel basket with 57 percent free area; removable access coupling and end cap for strainer maintenance.
- N. Grooved T-Pattern Strainer: 2" through 12" sizes, 300 PSI T-Type Strainer shall consist of ductile iron (ASTM A-536, Grade 65-45-12) body, Type 304 stainless steel frame and mesh removable basket with No. 12 mesh, 2"-3" strainer sizes, or No. 6 mesh, 4"-12" strainer sizes, 57% free open area. Strainer basket shall be accessed by removal of mechanical coupling.
- O. Flexible Connectors: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket; 150-psig minimum working pressure and 250 deg F maximum operating temperature. Connectors shall have flanged- or threaded-end connections to match equipment connected and shall be capable of 3/4-inch misalignment.
- P. Spherical, Rubber, Flexible Connectors: Fiber-reinforced rubber body with steel flanges drilled to align with Classes 150 and 300 steel flanges; operating temperatures up to 250 deg F and pressures up to 150 psig.
- Q. Packed, Slip, Expansion Joints: 150-psig minimum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, packing ring, packing, limit rods, flanged ends, and chrome-plated finish on slip-pipe telescoping section.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:
 1. Shutoff Duty: Gate, ball, and butterfly valves.
 - 2. Throttling Duty: Globe, ball, and butterfly valves.
- B. Install shutoff duty valves at each branch connection to supply mains, at supply connection to each piece of equipment, unless only one piece of equipment is connected in the branch line. Install throttling duty valves at each branch connection to return mains, at return connections to each piece of equipment, and elsewhere as indicated.
- C. Install calibrated balancing valves in the return water line of each heating or cooling element and elsewhere as required to facilitate system balancing.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves on hot-water generators and elsewhere as required by the ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to floor. Comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, for installation requirements.

- F. Install pressure-reducing valves on hot-water generators and elsewhere as required to regulate system pressure.
- 3.2 PIPING INSTALLATIONS
 - A. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for basic piping installation requirements.
 - B. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
 - C. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
 - D. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
 - E. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
 - F. Unless otherwise indicated, install branch connections to mains using tee fittings in main pipe, with the takeoff coming out the bottom of the main pipe. For up-feed risers, install the takeoff coming out the top of the main pipe.
 - G. Install strainers on supply side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
 - H. Anchor piping for proper direction of expansion and contraction.
- 3.3 HANGERS AND SUPPORTS
 - A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports." Comply with requirements below for maximum spacing of supports.
 - B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer. cal runs at roof, at each floor, and at 10-foot intervals between floors.
- 3.4 PIPE JOINT CONSTRUCTION
 - A. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for joint construction requirements for soldered and brazed joints in copper tubing; threaded, welded, and flanged joints in steel piping.
- 3.5 HYDRONIC SPECIALTIES INSTALLATION
 - A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
 - B. Install automatic air vents in mechanical equipment rooms only at high points of system piping, at heat-transfer coils, and elsewhere as required for system air venting.
 - C. Install dip-tube fittings in boiler outlet. Install piping to expansion tank with a 2 percent upward slope toward tank. Connect boiler-outlet piping.
 - D. Install in-line air separators in pump suction lines. Install piping to compression tank with a 2 percent upward slope toward tank. Install drain valve on units NPS 2 and larger.

- E. Install combination air separator and strainer in pump suction lines. Install piping to compression tank with a 2 percent upward slope toward tank. Install blowdown piping with gate valve; extend to nearest drain.
- F. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above floor. Install feeder in bypass line, off main, using globe valves on each side of feeder and in the main between bypass connections. Pipe drain, with ball valve, to nearest equipment drain.
- G. Install expansion tanks above air separator. Install gage glass and cocks on end of tank. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, and fittings, plus weight of a full tank of water. Do not overload building components and structural members.
- H. Install expansion tanks on floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system design requirements.
- 3.6 TERMINAL EQUIPMENT CONNECTIONS
 - A. Size for supply and return piping connections shall be same as for equipment connections.
 - B. Install control valves in accessible locations close to connected equipment.
 - C. Install bypass piping with globe valve around control valve. If multiple, parallel control valves are installed, only one bypass is required.
 - D. Install ports for pressure and temperature gages at coil inlet connections.

3.7 CHEMICAL TREATMENT

- A. Perform an analysis of supply water to determine the type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:
- B. Fill system and perform initial chemical treatment.

3.8 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush system with clean water. Clean strainers.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
 - 6. Grooved pipe ends shall be clean and free from indentations, projections and roll marks in the area from pipe end to groove for proper gasket sealing.
 - 7. The grooved couplings gasket style and elastomeric material (grade) shall be verified as suitable for the intended service as specified.
 - 8. Grooved couplings installation shall be complete when visual metal-to-metal contact is reached.

3.9 GROOVED PIPING TRAINING

1. A factory trained representative (direct employee) of the grooved coupling supplier shall provide on-site training for contractor's field personnel in the use of grooving tools, application of groove, and product installation.

PART 4 - Testing

- A. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release trapped air. Use drains installed at low points for complete draining of liquid.
 - 3. Check expansion tanks to determine that they are not air bound and that system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the design pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed either 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A of ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.

4.2 ADJUSTING

- A. Mark calibrated nameplates of pump discharge valves after hydronic system balancing has been completed, to permanently indicate final balanced position.
- B. Perform these adjustments before operating the system:
 - 1. Open valves to fully open position. Close coil bypass valves.
 - 2. Check pump for proper direction of rotation.
 - 3. Set automatic fill valves for required system pressure.
 - 4. Check air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Check operation of automatic bypass valves.
 - 7. Check and set operating temperatures of boilers, chillers, and cooling towers to design requirements.
 - 8. Lubricate motors and bearings.

4.3 CLEANING

A. Flush hydronic piping systems with clean water. Remove and clean or replace strainer screens. After cleaning and flushing hydronic piping systems, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

END OF SECTION 23 2113